Improving text categorization using the importance of sentences

نویسندگان

  • Youngjoong Ko
  • Jinwoo Park
  • Jungyun Seo
چکیده

Automatic text categorization is a problem of assigning text documents to pre-defined categories. In order to classify text documents, we must extract useful features. In previous researches, a text document is commonly represented by the term frequency and the inverted document frequency of each feature. Since there is a difference between important sentences and unimportant sentences in a document, the features from more important sentences should be considered more than other features. In this paper, we measure the importance of sentences using text summarization techniques. Then we represent a document as a vector of features with different weights according to the importance of each sentence. To verify our new method, we conduct experiments using two language newsgroup data sets: one written by English and the other written by Korean. Four kinds of classifiers are used in our experiments: Naive Bayes, Rocchio, kNN, and SVM. We observe that our new method makes a significant improvement in all these classifiers and both data sets. 2002 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA

With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...

متن کامل

Automatic Text Categorization using the Importance of Sentences

Automatic text categorization is a problem of automatically assigning text documents to predefined categories. In order to classify text documents, we must extract good features from them. In previous research, a text document is commonly represented by the term frequency and the inverted document frequency of each feature. Since there is a difference between important sentences and unimportant...

متن کامل

بهبود خلاصه سازی خودکار متون فارسی با استفاده از روش‌های پردازش زبان طبیعی و گراف شباهت

A significant amount of available information is stored in textual databases which contains a large collection of documents from different sources (such as news, articles, books, emails and web pages). The increasing visibility and importance of this class of information motivates us to work on having better automatic evaluation tools for textual resources. The automatic summarization of tex...

متن کامل

Semi-automatic approach to ASR errors categorization in multi-speaker corpora

Error diagnosis is an integral part of improving the quality and robustness of any ASR system, especially for languages with limited resources. This paper explores a semi-automatic approach to error categorization usable for databases that have a set of identical sentences produced by a sufficiently large number of speakers. We use a matrix created from an ordered list of speakers and an ordere...

متن کامل

The Prosody of Discourse Structure and Content in the Production of Persian EFL Learners

The present research addressed the prosodic realization of global and local text structure and content in the spoken discourse data produced by Persian EFL learners. Two newspaper articles were analyzed using Rhetorical Structure Theory. Based on these analyses, the global structure in terms of hierarchical level, the local structure in terms of the relative importance of text segments and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2004